Rabu, 07 Desember 2011

Teknik Gerinda

Menggrinda: suatu proses pengerjaan untuk meratakan permukaan, memotong, mengasah, menghaluskan menggunakan batu grinda
2. Fungsi grinda
- meratakan permukaan
-memotong
- mengasah
- menghaluskan
3. Harddining: pengerasan tujuan untuk menambah karbon

KESELAMATAN KERJA
- K.K Umum:
Ø Bertanya hal yang ragu
Ø Menggunakan alat yang sesuai fungsi
Ø Menempatkan peralatan
Ø Cermat/berhati-hati
Ø Tahu tempat racun api
Ø Matikan mesin
- K.K Mesin:
Ø Mempelajari buku petunjuk
Ø Terjadi keganjalan lapor
Ø Perhatikan spindle
- K.K Mesin:
Ø Kecelakaan lapor
Ø Memakai sepatu safety
Ø Kacamata
Ø Sarung tangan

Teknik Las

 PENGELASAN DENGAN OKSI ASETELIN

Pengelasan dengan oksi – asetilin adalah proses pengelasan secara
manual dengan pemanasan permukaan logam yang akan dilas atau
disambung sampai mencair oleh nyala gas asetilin melalui pembakaran C2H2
dengan gas O2 dengan atau tanpa logam pengisi. Proses penyam
bungan dapat dilakukan dengan tekanan (ditekan), sangat tinggi sehingga
dapat mencairkan logam.
Untuk memperoleh nyala pembakaran yang baik perlu pengaturan
campuran gas yang dibakar. Jika jumlah gas O2
di tambah maka akan
dihasilkan suhu yang sangat tinggi, lebih tinggi dari pada suhu lebur baja
atau metal lainnya sehingga dalam waktu sekejap mampu mencairkan
logam tersebut yang cukup tebal.
Pemakaian jenis las ini misalnya untuk keperluan pengelasan
produksi, kerja lapangan dan reparasi.
Umumnya las asetilin sangat baik untuk mengelas baja karbon,
terutama yang berbentuk lembaran-lembaran dan pipa berdinding tipis.
Pada umumnya semua jenis logam fero dan non fero dapat dilas dengan
las jenis lain, baik dengan fluks maupun tanpa fluks.

Menggunakan Peralatan Las OAW
SMK Bidang Perkapalan Program Keahlian Las Kapal

1. Oksigen
Penggunaan oksigen yang diambil dari udara bebas kurang
efisien, karena kandungan oksigen lebih rendah dibanding komposisi
gas lain. Untuk mengefisiensikan penggunaannya, oksigen perlu
disediakan dalam keadaan siap pakai dan mempunyai kemurnian yang
tinggi.
Tabung oksigen
Tabung oksigen adalah suatu silinder atau botol yang terbuat dari
bahan baja yang berfungsi sebagai tempat untuk menyimpan gas
oksigen dengan tekanan kerja tertentu. Tabung oksigen biasanya
berwarna biru atau hitam mempunyai katup atau pembuka katup berupa
roda tangan dan baut serta mur pengikatnya adalah ulir kanan.
Pada bagian atas ada dudukan untuk memasang regulator. Gas
yang terdapat dalam tabung baja ini mempunyai tekanan yang cukup
besar dan dalam satu tabung terdapat 40 liter atau 60 liter gas oksigen.
Penyimpanan gas oksigen
dalam tabung-tabung baja
dibagi ke dalam kelas-kelas
yaitu kelas medium dengan
tekanan sampai 15 kg/cm

dan kelas tekanan tinggi
dengan tekanan kerja hingga
165 kg/cm


2. Asetilin
Asetilin diperoleh lewat reaksi kimia dalam bentuk gas. Karena
berbentuk gas, maka asetilin memerlukan perlakuan khusus, terutama
dalam penyimpanan dan penggunaannya. Agar lebih fleksibel dalam

Menggunakan Peralatan Las OAW
SMK Bidang Perkapalan Program Keahlian Las Kapal

penggunaanya gas asetilin disimpan dalam tabung, yang dapat dipindah
dan mudah penggunaanya.
Tabung Asetilin
Tabung asetilin adalah silinder atau botol yang terbuat dari bahan
baja yang berfungsi sebagai tempat untuk menyimpan gas asetilin
dengan tekanan kerja tertentu. Didalam tabung asetilin terdapat
beberapa alat misalnya bahan berpori seperti kapas sutra tiruan atau
asbes yang berfungsi sebagai penyerap aseton, yaitu bahan agar
asetilin dapat larut dengan baik dan aman di bawah pengaruh tekanan.
Sistem penyimpanan asetilin dalam tabung asetilin relatif aman
jika tidak terjadi kebocoran atau tidak terkena suhu yang tinggi. Untuk
mengantisipasi bahaya yang timbul, maka pada bagian bawah tabung
diberi sumbat pengaman atau sumbat lebur.
Sumbat pengaman akan
meleleh dan lubang yang
disumbat akan bocor bila sumbat
pengaman bersuhu 100derajat Celcius. Jika
botol mempunyai suhu yang
berlebihan maka sumbat akan
meleleh dan gas asetilin akan
keluar silinder sebelum tabung
meledak. Panas tabung asetilin
juga dapat disebabkan oleh
proses
pengeluaran
atau
penggunaan gas asetilin berlebih
an. Setiap pengeluaran gas ase
tilin botol bertambah panas, ma
ka pengeluaran gas tidak boleh
lebih dari 750 liter tiap jam.

Menggunakan Peralatan Las OAW
SMK Bidang Perkapalan Program Keahlian Las Kapal

Seperti tabung oksigen tabung ini berisi 40 sampai 60 liter gas
asetilin, tetapi bentuknya pendek dan gemuk, biasanya berwarna merah,
tekanan isinya sampai 15 kg / cm

K3

Kesehatan dan keselamatan kerja (K3)
Selalu ada resiko kegagalan (risko of failures) pada setiap proses/aktifitas pekerjaan. Dan saat kecelakaan kerja (work accident) terjadi, seberapapun kecilnya akan mengakibatkan efek kerugian(loss). Karena itu sedapat mungkin dan sedini mungkin, kecelakaan/potensi kecelakaan kerja harus dicegah/dihilangkan,atau setidaknya dikurangi dampaknya. Penanganan masalah keselamatan kerja didalam sebuah perusahaan harus dilakukan secara serius oleh seluruh komponen pelaku usaha, tidak bisa secara parsial dan perlakuan sebagai bahasan-bahasan marginal dalam perusahaan.


Secara umum penyebab kecelakaan ditempat kerja adalah sebagai berikut:
1.       Kelelahan(Fatigue)
2.       Kondisi tempat kerja (eviromental aspects) dan pekerjaan tidak amat (unsafe working condition)
3.       Kurangnya penguasaan pekerja terhadap pekerjaan, yang ditengarai penyebab awalnya(pre-cause) adalah kurangnya training.
4.       Karalteristik pekerja itu sendiri
5.       Hubungan antara karakteristik pekerjaan dan kecelakaan kerja menjadi focus bahasa yang cukup menarik dan membutuhkan perhatian sendiri. kecepatan kerja(paced work), pekerjaan yang dilakukan secara berulang (short-cycly repetilitive work), pekerjaan-pekerjan yang harus diawali dengan “pemanasan procedural “, beban kerja (workload), dan lamanya sebuah pekerjaan dilakukan(workhors) adalah beberapa karakteristik pekerjaan yang dimaksud.

Penyebab-penyebab tersebut bisa terjadi secara tunggal, simultan, maupun dalam sebuah rangkaian sebab akibat (causeconsequences chain). Jika kecelakaan terjadi maka akan sangat mempengaruhi produktifitas kerja.

1.       Manajemen bahaya
Aktifitas situasi,kondisi, kejadian, gejala, proses, material, dan segala sesuatu yang ad ditempat kerja atau berhubungan pekerjaan yang menjadi atau berpotansi menjadi sumber kecelakaan atau cedera atau penyakit dan kemataian disebut dengan bahaya atau risiko. Secara garis besar, bahaya/risiko dikelompokan menjadi 3 kelompok yaitu:
1.       Bahaya/risiko lingkungan
Termasuk didalamnya adalah bahaya biologi, kimia, ruang kerja, suhu, kualitas udara, kebisingan, panas/ternal, cahaya dan pencahayaan.
2.       Bahaya/risiko kerja/tugas.
Misalnya: pekerjaan-pekerjaan yang dilakukan secara manusia secara manual, peralatan dan perlengkapan dalam pekerjaan, getaran, faktor ergonomi, bahan/material, peraturan pemerintah RI No:74 tahun 2001, tentang pengelola bahan berbahaya dan beracun (B3), dll.
3.       Bahaya/risiko manusia
Kejahatan ditempat kerja, termasuk kekerasan sifat pekerjaan itu sendiri yang berbahaya, umur pekerja, personal, protective eguipment, kelelahan dan setres dalam pekerjaan dan pelatihan.
        Berdasarkan “derajad keparahannya” bahaya diatas dibagi kedalam 4 kelas yaitu:
-          Extreme risk
-          Nigh risk
-          Moderate risk
-          Low risk

Dalam manajemen bahaya (hazard management) dikenal lima perinsip pengendalian bahaya yang bisa digunakan secara bertingkat/bersama-sama untuk mengurangi/menghilangkan tingkat bahaya, yaitu:
1.       Penggantian atau Subtitution, juga dikenal sebagai engineering control.
2.       Pemisah/separation.
a.       Pemisah fisik/physical separation.
b.      Pemisah waktu/time separation.
c.       Pemisah jarak/distance separation.
3.       Ventilasi/ventilation.
4.       Pengendalian administrative/administrative controls
5.       Perlengkapan perlidungan personnel/personnel protective equipment(PPE)

Ada tiga tahap penting (criticoel stage) dimana kelima prinsip tersebut sebaiknya diimplementasikan yaitu:
1.       Pada saat pekerjaan dan fasilitas kerja sedang dirancang.
2.       Pada saat prosedur operasional sedang dibuat.

Rabu, 19 Oktober 2011

Proses Dasar Pengolahan Logam(PDPL)

Pengelompokan Bahan

Bahan :
1.      Logam :
a.      Logam Ferro
b.      Logam Non Ferro
2.      Bukan Logam
3.      Komposit
      Bahan ialah segala sesuatu yang di sediakan oleh alam untuk dapat di gunakan olehmanusia dalam kehidupannya.
1.    Logam
Logam adlah unsure kimia yang mempunyai sifat-sifat :
·         Dapat di tempa atau di ubah bentuknya
·         Pengantar panas dan pangantar listrik
·         Keras(tahan terhadap goresan,potongan,dan kehausan)
·         Kenyal(tahan patah bila di bentang)
·         Kuat(tahan terhadap benturan dan pukulan)
·         Liat(dapt di tarik)
·         Titik cair tinggi
Contoh dari logan antara lain : tembaga,emas,nikel,besi,timah putih,dll.
a.     Logam Ferro
Logam ferro adalah suatu bahan yang mengandung unsur besi(Fe).Besi merupakan logam yang penting dalam bidang teknik,tetapi besi murni terlalu lunak dan rapuh sebagai bahan kerja,bahan konstruksi dlln.Oleh karena itu besi selalu bercampur dengan unsur lain,terutama zat arang/karbon (C).Sebutan besi dapat berarti:
1.      Besi murni dengan simbol kimia Fe yang hanya dapat diperoleh dengan jalan reaksi kimia.
2.      Besi teknik adalah yang sudah atau selalu bercampur dengan unsur lain.
b.    Logam non Ferro

Mesin CNC

Pengertian Mesin CNC
                  Mesin CNC ( Computer Numerically Controlled )adalah suatu mesin yang dikontrol oleh komputer dengan menggunakan bahasa numerik (data perintah dengan kode angka, huruf dan simbol) sesuai standart ISO.Sistem kerja teknologi CNC ini akan lebih sinkron antara komputer dan mekanik, sehingga bila dibandingkan dengan mesin perkakas yang sejenis, maka mesin perkakas CNC lebih teliti, lebih tepat, lebih fleksibel dan cocok untuk produksi masal.Dengan dirancangnya mesin perkakas CNC dapat menunjang produksi yang membutuhkan tingkat kerumitan yang tinggi dan dapat mengurangi campur tangan operator selama mesin beroperasi.

Mesin Frais

Pengertian Mesin Frais
Mesin frais adalah sejenis mesin perkakas untuk mengerjakan peralatan mesin dari logam dengan gerakan utama alat potongnya berputar.
Jenis pekerjaan yang dapat dikerjakan dengan mesin frais adalah:
  1. Permukaan rata dan datar
  2. Permukaan siku dan sejajar
  3. Permukaan bersudut
  4. Beralur dan berbentuk
  5. Roda gigi
  6. Benda-benda persegi

Rabu, 12 Oktober 2011

Mesin Bubut

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Mesin bubut tahun 1911 menunjukkan bagian-bagiannya.
Mesin bubut kecil
Mesin Bubut adalah suatu Mesin perkakas yang digunakan untuk memotong benda yang diputar. Bubut sendiri merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan.
Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengan jalan menukar roda gigi translasi yang menghubungkan poros spindel dengan poros ulir.
Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. Roda gigi penukar dengan jumlah 127 mempunyai kekhususan karena digunakan untuk konversi dari ulir metrik ke ulir inci.

[sunting] Prinsip kerja mesin bubut

Mesin bubut yang menggunakan sabuk di Hagley Museum
Poros spindel akan memutar benda kerja melalui piringan pembawa sehingga memutar roda gigi pada poros spindel. Melalui roda gigi penghubung, putaran akan disampaikan ke roda gigi poros ulir. Oleh klem berulir, putaran poros ulir tersebut diubah menjadi gerak translasi pada eretan yang membawa pahat. Akibatnya pada benda kerja akan terjadi sayatan yang berbentuk ulir.

[sunting] Bagian-bagian mesin bubut

Mesin bubut terdiri dari meja dan kepala tetap. Di dalam kepala tetap terdapat roda-roda gigi transmisi penukar putaran yang akan memutar poros spindel. Poros spindel akan menmutar benda kerja melalui cekal. Eretan utama akan bergerak sepanjang meja sambil membawa eretan lintang dan eretan atas dan dudukan pahat. Sumber utama dari semua gerakkan tersebut berasal dari motor listrik untuk memutar pulley melalui sabuk.

[sunting] Jenis-jenis Mesin Bubut

  1. Mesin Bubut Universal
  2. Mesin Bubut Khusus
  3. Mesin Bubut Konvensional
  4. Mesin Bubut dengan Komputer (CNC)

Selasa, 04 Oktober 2011

TEKNIK GAMBAR PERMESINAN

Terdapat 6 inti bahasan utama yang harus dikuasai dalam mempelajari Gambar Teknik Mekanik, yaitu :
  1. Jenis-jenis garis
  2. Proyeksi
  3. Perspektif
  4. Potongan
  5. Penunjukkan ukuran
  6. Toleransi
Hal di atas mutlak diperlukan untuk bisa membaca, mengerti dan membuat gambar teknik mekanik dengan benar

1. JENIS-JENIS GARIS

1 Jenis-jenis garis dan pengunaannya
Dalam penggambaran teknik, digunakan beberapa jenis garis yang digunakan sesuai dengan maksud dan
tujuannya. Pada dasarnya, jenis-jenis garis dibagi menjadi 3 bentuk :
1. Garis nyata, yaitu garis kontinu
2. Garis gores, yaitu garis pendek-pendek dengan jarak antara
3. Garis bergores, yaitu garis gores panjang dengan garis gores pendek diantaranya
Selain bentuk, harus diperhatikan juga ketebalan garis yang digunakan. Berdasarkan tebalnya, garis dibagi menjadi dua jenis, yaitu garis tebal dan garis tipis, dengan masing-masing kegunaannya. Di bawah ini adalah contoh dari penggunaan variasi garis dan tabel keterangannya

Gambar 1
Contoh penggunaan variasi jenis garis
Tabel jenis-jenis garis dan penggunaannya
Contoh lain penggunaan garis

2. PROYEKSI

Proyeksi 2 dimensi adalah penerjemahan suatu benda bentuk 3 dimensi kedalam bentuk 2 dimensi, artinya benda tersebut digambarkan hanya dari salah satu sudut pandang, dan oleh sebab itu gambar proyeksi 2 dimensi hanya memiliki dua komponen ukuran , yaitu panjang dan lebar. Kekurangan satu elemen ukuran yang lain yaitu ukuran tinggi dikompensasi dengan di buatkan proyeksi dari sudut pandang yang lain yang dapat memperlihatkan ketinggian benda tersebut. Apabila benda yang hendak diproyeksikan memiliki kerumitan yang tinggi, tidak menutup kemungkinan gambar proyeksi yang dibuat menampilkan banyak sudut pandang. Gambar tampilan proyeksi 2 dimensi diusahakan menampilkan sesedikit mungkin pandangan dengan memperhatikan faktor kerapian dan kemudahan pembacaan gambar.

Konsep proyeksi
Konsep proyeksi
Mengapa kita membutuhkan lebih dari satu pandangan ?
Dalam pembuatan gambar teknik, ada kalanya satu pandangan tidak mencukupi untuk menerjemahkan suatu benda ke dalam gambar proyeksi 2 dimensi. Perhatikan gambar contoh di bawah;

Gambar 6. Pandangan depan suatu benda
Gambar 7. Alternatif bentuk
Pada gambar 6 terlihat bahwa semua bentuk benda tersebut memiliki gambar proyeksi yang sama seperti gambar 3 (dilihat dari pandangan depan). Untuk mengetahui dengan pasti bagaimana bentuk benda yang sebenarnya, kita harus menambah gambar proyeksi tersebut dengan mengambil sudut  pandang yang lain, bisa 2 pandangan, 3 pandangan atau lebih, tergantung dari tingkat kerumitan yang dimiliki oleh benda tersebut. Peraturan dalam menentukan jumlah sudut pandang proyeksi adalah buatlah pandangan sesedikit mungkin, dengan menampilkan seluruh informasi yang diperlukan, dengan catatan keseluruhan gambar tersebut mudah dibaca semua orang (artinya lebih baik membuat gambar 3 pandangan dengan kondisi yang mudah dibaca daripada membuat gambar 2 pandangan dengan kondisi yang sulit dibaca).

Gambar proyeksi
Dari gambar di atas terlihat bahwa untuk menerjemahkan benda 3d (gambar 7) diperlukan paling sedikit 2 pandangan, bisa terdiri dari bermacam kombinasi pandangan, bisa tediri dari pandangan depan + pandangan samping, atau pandangan depan + pandangan atas, atau yang lainnya sepanjang semua informasi bentuk tercakup dalam gambar proyeksi tersebut.
Berikut ini adalah contoh-contoh proyeksi dari benda-benda sederhana, dilanjutkan dengan soal-soal latihannya :



Penguasaan gambar proyeksi diperlukan terutama untuk membuat gambar teknik, bukan untuk membaca gambar teknik, tetapi karena tingkat kesulitan dalam membuat gambar berada di bawah  tingkat kesulitan membaca gambar, maka pelajaran proyeksi sebaiknya dilakukan pada tahap awal pengajaran, untuk pendahuluan dalam pelatihan daya bayang dalam pembacaan bentuk gambar  3 dimensi (perspektif).
Sudut pandang proyeksi
Konsep lay out (tata letak) dalam penggambaran gambar teknik terdapat dua macam konsep, yang didasarkan pada sudut pandang gambar, yaitu :
1. Sudut pertama (1st angle) atau proyeksi Eropa

2. Sudut ketiga (3rd angle) atau proyeksi Amerika


Perhatikan gambar di bawah ;

Cara proyeksi berdasarkan kwadran
“Kamar-kamar” yang terbentuk dari potongan bidang proyeksi tersebut disebut kwadran, yang berarti masing-masing kamar dinamakan kwadran pertama, kwandran kedua sampai keempat, apabila benda diletakkan pada kwadran pertama dan diproyeksikan pada bidang proyeksi di dalamnya, maka cara seperti ini disebut cara pandang (cara proyeksi) kwadran pertama (atau sudut pertama), demikian juga halnya apabila benda diletakkan pada kwadran ketiga dan diproyeksikan pada bidang-bidang proyeksinya, maka cara tersebut dinamakan cara pandang sudut ketiga. Secara konsep, proyeksi sudut kedua dan keempat pun bisa digunakan, tetapi pada prakteknya yang sekarang ini digunakan hanyalah proyeksi sudut pertama dan ketiga.
Cara proyeksi sudut pertama
Benda seperti yang tampak pada gambar 12a diletakkan di depan bidang-bidang proyeksi seperti pada gambar 12b. Ia diproyeksikan pada bidang belakang menurut garis penglihatan A, dan gambarnya adalah gambar pandangan depan. Tiap garis atau tepi benda tergambar sebagai titik atau garis pada bidang proyeksi. Pada gambar 12b tampak juga proyeksi benda pada bidang bawah menurut arah B, menurut arah C pada bidang proyeksi sebelah kanan , menurut arah D pada bidang proyeksi sebelah kiri, menurut arah E pada bidang proyeksi atas, dan menurut arah F pada bidang depan. Setelah terbentuk semua proyeksi (gambar 12b), bentangkan semua bidang proyeksi menjadi bidang-bidang 2 dimensi (gambar 13a).
Gambar 12a                                                                               Gambar12b

Gambar 13a                                                                         Gambar 13b
Susunan gambar proyeksi harus sedemikian rupa sehingga pandangan depan A sebagai patokan, pandangan atas B terletak dibawah, pandangan kiri C terletak di kanan, pandangan kanan D terletak disebelah kiri, pandangan bawah E terletak diatas, dan pandangan belakang F boleh ditempatkan disebelah kiri atau kanan. Hasil selengkap dapat di lihat pada Gambar 13b.
Dalam gambar, garis-garis tepi yaitu garis-garis batas antara bidang-bidang proyeksi dan garis-garis proyeksi tidak digambar.
Gambar proyeksi demikian disebut gambar proyeksi sudut pertama. Cara ini disebut juga “Cara E” karena cara ini telah banyak dipergunakan dinegara-negara Eropa seperti Jerman, Swiss, Prancis, Rusia dsb.
Cara proyeksi sudut ketiga
Benda yang akan digambar diletak dalam peti dengan sisi-sisi tembus pandang sebagai bidang-bidang proyeksi, seperti pada gambar 14a. Pada tiap-tiap bidang proyeksi akan tampak gambar pandangan dari benda menurut arah penglihatan, yang ditentukan oleh anak panah.
Pandangan depan dalam arah A dipilih sebagai pandangan depan. Pandangan-pandangan lain diproyeksikan pada bidang proyeksi lainnya menuerut gambar 14a, Sisi peti dibuka menjadi satu bidang proyeksi lainnya menurut gabar 14b. Hasil lengkapnya dapat dilihat pada gambar 14c. Dengan pandangan A sebagai patokan, pandangan atas B diletakkan di atas, pandangan kiri C diletakkan di kiri, pandangan kanan D diletakkan di kanan, pandangan bawah E diletakkan di bawah, dan pandangan belakang F dapat diletakkan di kiri atau kanan. Susunan proyeksi demikian disebut gambar proyeksi sudut ketiga, dan disebut juga “Cara A” karena cara ini telah dipakai di Amerika.Negara-negara lain yang banyak mempergunakan cara ini adalah Jepang, Australia, Canada dsb.

Benda kerja                                                                             Hasil proyeksi

Susunan gambar hasil proyeksi
3. PERSPEKTIF
Gambar perspektif adalah gambar 3 dimensi yang merupakan hasil terjemahan dari gambar 2 dimensi, jadi merupakan kebalikan dari gambar proyeksi. Membuat gambar perspektif relatif lebih sulit dibandingkan dengan menggambar proyeksi. Kesulitan pertama adalah menggabungkan seluruh pandangan yang ada sehingga kita bisa membayangkan bentuk benda yang sebenarnya. Kesulitan kedua adalah, walaupun kita sanggup membayangkan bentuk perspektif dari benda tersebut di pikiran kita, seringkali kita kesulitan dalam menggambarkan bentuk tersebut di atas kertas. Menerjemahkan hasil pembacaan kita ke atas kertas memang tidak mutlak harus dilakukan, tetapi akan sangat membantu apabila kita sanggup melakukannya.
Kemampuan untuk membaca gambar (membayangkan perspektif) lebih banyak diperlukan secara umum daripada kamampuan membuat gambar (membayangkan proyeksi). Kemampuan membuat gambar diperlukan hanya terbatas utuk orang-orang yang tugasnya memang membuat/mencipta gambar teknik, seperti misalnya drafter, designer, atau copies. Tetapi kemampuan membaca gambar diperlukan oleh lebih banyak orang yang tugasnya berkaitan dengan bidang engineering. Oleh karenanya pelatihan gambar perspektif harus dilakukan secara intensif. Teori pada pokok bahasan perspektif ini sangatlah sedikit (untuk tahap dasar), sehingga metoda pelatihan yang terbaik adalah dengan dengan banyak mengerjakan latihan-latihan soal.  Di bawah ini adalah beberapa contoh aplikasi gambar perspektif, pelajari dengan baik, kemudian kerjakan latihan soal-soal pada halaman paling belakang

Proyeksi                                                         Perspektif

Keterangan :             PD (pandangan depan), PS (pandangan samping), PA (pandangan atas)

Contoh gambar perspektif
4. GAMBAR POTONGAN
Tidak jarang ditemui benda-benda dengan rongga–rongga didalamnya. Untuk menggambarkan bagian–bagian ini dipergunakan garis gores, yang menyatakan garis–garis tersembunyi. Jika hal ini dilaksanakan secara taat asas, maka akan dihasilkan sebuah gambar yang rumit sekali dan susah dimengerti. Bayangkan saja jika sebuah lemari roda gigi harus digambar secara lengkap! Untuk mendapatkan gambaran dari bagian–bagian yang tersembunyi ini, bagian yang menutupi dibuang. Gambar demikian disebut gambar potongan, atau disingkat dengan potongan.
Gambar pada gambar 16a memperlihatkan sebuah benda dengan bagian yang tidak kelihatan. Bagian ini dapat dinyatakan dengan garis gores. Jika benda ini dipotong, maka bentuk dalamnya akan lebih jelas lagi. Gambar 16b memperlihatkan cara memotongnya, dan gambar 16c sisa bagian depan setelah bagian yang menutupi disingkirkan. Gambar sisa ini diproyeksikan ke bidang potong, dan hasilnya disebut potongan (gambar 16d. Gambarnya diselesaikan dengan garis tebal.
Dalam hal–hal tertentu bagian–bagian yang terletak di belakang potongan ini, tidak perlu digambar. Hanya jika bagian ini diperlukan,  maka bagian di belakang potongan ini digambar dengan garis gores.

Gambar 16. Penjelasan Mengenai Potongan
Cara–Cara Membuat Potongan
Potongan Dalam Satu Bidang
(1) Potongan Oleh Bidang Potong Melalui Garis Sumbu Dasar
Jika bidang potongan melalui garis sumbu dasar, pada umumnya garis potongnya dan tanda tandanya tidak perlu dijelaskan pada gambar. Foto demikian disebut potongan utama (gambar 17a)
(2) Potongan Yang Tidak Melalui Garis Sumbu Dasar
Jika diperlukan potongan yang tidak melalui sumbu dasar, letak bidang potongnya harus dijelaskan pada garis potongnya (gambar 17b).

Gambar 17a                                                                                           Gambar 17b
Potongan melalui garis sumbu dasar                                                   Potongan tidak melalui garis sumbu dasar
Potongan Oleh lebih dari satu bidang
(1)   Potongan Meloncat
Untuk menyederhanakan gambar dan penghematan waktu, potongan–potongan dalam beberapa bidang sejajar dapat disatukan. Pada gambar 18a diperlihatkan sebuah benda yang dipotong menurut garis potong A-A. sebenarnya bidang potongannya terdiri atas dua bidang, yang dalam hal ini akan disatukan. Potongan demikian dinamakan potongan meloncat.
(2)   Potongan oleh dua bidang berpotongan
Bagian – bagian simetrik dapat digambar pada dua bidang potong yang saling berpotongan. Satu bidang potong merupakan potongan utama, sedangkan bidang yang lain menyudut dengan bidang pertama. Proyeksi pada bidang terakhir ini, setelah diselesaikan menurut aturan-aturan yang berlaku, diputar hingga berhimpit pada bidang proyeksi pertama. Gambar 18b menunjukkan bagaimana caranya membuat gambar potongan demikian.
(3)   Potongan pada bidang berdampingan
Potongan pada pipa berbentuk seperti gambar 18c dapat dibuat dengan bidang–bidang yang berdampingan melalui garis sumbunya.
gambar 18a                                  gambar 18b                                       gambar 18c
Pot. meloncat                   Pot.  dua bidang menyudut         Pot. bidang berdampingan
Potongan Separuh
Bagian–bagian simetrik dapat digambar setengahnya sebagai gambar potongan dan setengahnya lagi sebagai pandangan (gambar 19). Dalam gambar ini garis–garis yang tersembunyi tidak perlu digambar dengan garis gores lagi. Karena sudah jelas pada gambar potongan.
Gambar 19. Potongan separuh
Potongan Setempat
Kadang–kadang diperlukan gambaran dari bagian kecil saja dari benda yang tersembunyi, misalnya benda pada gambar 20a. Gambar–gambar 20b dan 20c  memperlihatkan gambar  yang dipotong setempat dan potongan penuh. Potongan setempat juga dilakukan pada bagian–bagian yang tidak boleh dipotong (gambar 20d).


gambar 20a                                                                          gambar 20b
gambar 20c.  Potongan penuh                                                 gambar 20d
Bagian-bagian yang tidak boleh dipotong
Ada beberapa jenis benda yang tidak diperboleh kan untuk dipotong, yaitu :
Baut, Paku keling, pasak, poros, sirip penguat, tidak boleh dipotong simbol memanjang.
Arsir
Untuk membedakan gambar potongan dari gambar pandangan, dipergunakan arsir, yaitu garis tipis miring.
Kemiringan garis arsir adalah 45° terhadap garis sumbu, atau terhadap garis gambar. Arsiran dari 2 bagian yang berbeda dan berimpit harus dibedakan pitch-nya.

5. PENUNJUKKAN UKURAN
Poin yang akan dipelajasi pada pokok bahasan ini antara lain :
  1. Jenis ukuran (berdasarkan obyek yang di beri ukuran)
  2. Datum
  3. Peraturan-peraturan dalam memberikan ukuran
Untuk memudahkan pemahaman, jenis ukuran dibagi dua, yaitu ukuran bentuk dan ukuran posisi.
Ukuran bentuk yaitu ukuran yang menunjukkan panjang dan lebar suatu obyek, termasuk di dalamnya ukuran diameter, radius, dan lain-lain. Sedangkan ukuran posisi adalah ukuran yang menunjukkan jarak obyek tersebut dari suatu bidan referensi tertentu (datum). Contoh ukuran bentuk : Obyek kotak segi empat akan memiliki ukuran bentuk panjang dan lebar, lingkaran akan memiliki ukuran bentuk diameter atau radius, segitiga akan memiliki ukuran bentuk panjang dan tinggi atau panjang dan sudut, dan lain-lain.
Gambar 21. Contoh ukuran bentuk
Untuk memberikan ukuran posisi kita harus menentukan posisi datum terlebih dahulu. Datum adalah bidang referensi. Datum ini bisa berupa titik sudut, garis, ataupun bidang pada suatu benda. Penentuan datum ini didasarkan oleh hal-hal berikut ini :
  1. Fungsi dari benda
  2. Kemudahan pengerjaan
  3. Kemudahan perakitan

Gambar 22. Contoh Datum
Aturan-aturan dalam pemberian ukuran :
  1. Ukuran harus cukup jelas untuk bisa dibaca dengan mudah
  2. Hindari pemberian ukuran ganda
  3. Usahakan untuk menempatkan ukuran diluar area benda
  4. Pastikan angka ukuran dan garis panahnya tidak ditabrak oleh garis yang lain

Gambar 23. Contoh cara penunjukkan ukuran yang benar
Hal penting yang lain dalam penunjukkan ukuran adalah penyederhanaan ukuran, artinya penunjukkan ukuran dibuat sedemikian rupa hingga tidak memakan banyak area gambar yang berarti membuat gambar menjadi lebih lapang dan mudah dibaca. Selain itu dengan efisiensi ukuran, gambar benda yang ditampilkan bisa lebih besar (skala), dan pembacaan akan lebih mudah. Penyederhanaan boleh dilakukan dengan tanpa mengurangi fungsi dari ukuran itu sendiri.
Di bawah ini adalah contoh bentuk-bentuk penyederhanaan ukuran yang distandardkan oleh ISO.

Gambar 24. Contoh gambar penyederhanaan ukuran
6. TOLERANSI
Pada Gambar Teknik, kita mengenal  ada beberapa 2 macam toleransi, antara lain
1. Toleransi bentuk dan Posisi
Yang dimaksudkan dengan toleransi bentuk dan posisi  adalah, batasan-batasan penyimpangan bentuk atau posisi benda kerja yang diizinkan
2. Toleransi ukuran.
Yang dimaksud dengan toleransi ukuran adalah batasan-batasan penyimpangan ukuran yang diperbolehkan pada suatu benda kerja.
Pada artikel ini kita hanya akan membahas Toleransi ukuran, yang memang banyak kita lihat dan kita pakai sehari-hari. Toleransi ukuran terbagi lagi atas beberapa jenis:
  • Toleransi Umum
  • Toleransi Khusus
  • Toleransi Suaian

Toleransi Umum
Toleransi umum, adalah besaran angka toleransi yang berlaku untuk semua ukuran yang terdapat pada gambar, kecuali ukuran-ukuran yang telah dicantumi angka toleransi secara khusus. Dengan kata lain, ukuran yang tidak diikuti oleh harga toleransi berarti mengikuti harg atoleransi umum yang berlaku.
Contoh :

Gambar 25. Contoh toleransi umum
Toleransi Khusus
Toleransi khusus adalah toleransi di luar angka toleransi umum, dan diletakkan langsung setelah angka nominalnya.

Gambar 26. Contoh toleransi khusus

Toleransi Suaian
Biasanya toleransi suaian dipakai pada benda kerja yang berpasangan, seperti misalnya Poros dan As. Untuk toleransi ini biasanya menggunakan symbol Huruf, untuk lubang biasanya menggunakan huruf Kapital / Huruf besar, sedangkan untuk poros menggunakan huruf kecil.
Untuk mudahnya, toleransi suaian ini kita jelaskan dengan mengaplikasikannya pada bentuk lubang dan poros yang berpasangan satu sama lain. Harga toleransi suaian yang dicantumkan menentukan keadaan kelonggaran antara lubang dan poros tersebut. Keadaan suaian dibagi menjadi 3 jenis :
  • Suaian longgar (clearance fit)
Harga toleransi  yang menghasilkan keadaan longgar antara lubang dan poros
  • Suaian luncur (sliding fit)
Harga toleransi yang menghasilkan keadaan luncur/halus antara lubang dan poros.m Pada keadaan           ini, antara poros dan lubang nyaris tanpa kelonggaran, gap yang tercipta antara lubang dan poros        berkisar antara 0.002-0.02mm (tergantung dari ukuran nominal lubang-poros).
  • Suaian sesak (interference fit)
Harga toleransi yang meghasilkan keadaan sesak antara lubang dan poros. Pada keadaan ini ukuran poros lebih besar daripada ukuran lubang, yang memerlukan usaha tersendiri untuk memasang poros ke lubang tersebut (menggunakan tenaga manusia dibantu alat ketok, menggunakan mesin press, menggunakan metoda pemanasan lubang, dsb).
Ukuran yang menggunakan harga toleransi suaian mencantumkan angka nominal, simbol toleransi dan angka toleransinya yang ditulis di dalam kurung (angka ini dituliskan hanya apabila diperlukan, misalnya pihak pengguna gambar tidak memiliki table standar suaian ISO).
Khusus pada gambar susunan, angka nominal dari benda harus mencantumkan harga toleransi untuk kedua  benda, lubang maupun poros.